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Abstract
We propose a new dynamic proactive learning
framework where the near-optimal instance selec-
tion strategy is learned from past annotation his-
tory and updated adaptively to the time-varying
progress of learner. We motivate our approach
from the observation that no single static strat-
egy (e.g. uncertainty, density-based, annotator
expertise-based, etc.) can choose the optimal sam-
ples at every iteration, and that different selection
criteria lead to better improvement at different
phases of proactive learning. We thus formu-
late the problem of finding optimal strategy as
dynamic attention learning of weights over an
ensemble of multiple selection strategies, where
attention weights are optimized using a structural
SVM framework. Our empirical results on several
datasets show that the proposed approach outper-
forms other baseline ensemble methods as well
as strong state-of-the-art active learning strategies
that adhere to a single policy. The framework we
propose is flexible and thus can work with any
other active learning selection criteria, extending
the scope beyond the baselines and the simple
exploration-exploitation trade-off.

1. Introduction
Active learning has been widely studied and applied in a
number of domains to reduce annotation cost and sample
complexity in many machine learning or data mining ap-
plications (McCallum & Nigam, 2001; Roy & Mccallum,
2001; VanHoudnos et al., 2017; Moon et al., 2014). To
practice active learning in real-world scenario, proactive
learning has been recently proposed, which accommodates
for more practical constraints such as different availability or
expertise of annotators, extending the scope of the problem
to wider application (Donmez & Carbonell, 2010; Yan et al.,
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2014; Moon & Carbonell, 2014). Most of the recent work on
active learning does not address the time-varying progress
of learner knowledge state adaptively, and instead adheres
to a static policy invariant with respect to new observations,
resulting in non-optimal instance selection.

Figure 1 illustrates the motivation of this work and the ef-
ficacy of the proposed approach. It is clearly observed in
this illustration that (1) no single strategy can directly pre-
dict the best actual future improvement all the time, that
(2) ground-truth trends of the preferred mode of strategies
change over time as more samples are annotated, and that
(3) sometimes there is no single selection strategy that can
single-handily predict future improvement, whereas there
exists an ensemble of strategies that predicts better. In reality
there are numerous other factors that affect a true underly-
ing optimal strategy than what it is illustrated in this figure,
such as the time-varying improvement of labeler accuracy,
many of which are subject to change as new observations
are made. We therefore aim to design an adaptive proactive
learning framework that can address beyond determining
when to explore or to exploit, and aim at finding exactly
what and how much to explore or exploit, with a careful
balance that can approximate the ground-truth optimal strat-
egy. Note that this balance pattern is highly dependent on
underlying distribution of a dataset as well as stream of
labels obtained from annotators, and thus optimal selection
strategies cannot be known a priori. As such, we propose
to learn a new strategy as an attention-based aggregation of
existing strategies, where optimal combination is assumed
to be conditional on the labels obtained so far. Additionally,
we propose to update this strategy adaptively to a new trend
as the true optimal strategy varies with progress of learner
and new observations.

In this paper, we formulate the problem of finding optimal
proactive learning strategy as dynamic attention learning
of weights on ensemble of multiple selection strategies. In
essence, we assume that utility of an unlabeled sample can
be composed of weighted combination of values measured
by multiple strategies, where the optimal attention over
strategies is dynamically predicted. The active learning
process then reduces to a utility maximization task where
utility values of samples are computed based on the learned
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Figure 1. Motivation for dynamic proactive learning, illustrated with UCI Landsat Satellite Dataset (Lichman, 2013) projected on 2-
dimensional space via PCA. Each row represents different stages (iteration=200 and 800) of active learning. Drawn in the background are
the 5 class-dividing hyperplanes learned thus far, and each dot represents an unlabeled sample. (a) shows actual future improvement of the
learner in cross-validation performance when a ground-truth label for a corresponding sample is obtained. (c)-(e) show utility values
measured by various active learning strategies. While none of the single strategies serves as a consistently reliable indicator, (b) the
dynamic proactive learning framework (DPAL) predicts utility values that match closely to actual future improvement.

optimal strategy.

Our contributions are three-fold: (1) We propose a dy-
namic proactive learning (DPAL) framework that optimizes
between multiple strategies based on the previous annota-
tion history, extending the scope of adaptive active learning
beyond the simple exploration-exploitation trade-off. In
addition, we consider diverse dimensions of data utility in
relation to the proactive learning scenario with multiple
imperfect annotators, thus accounting for time-varying esti-
mate of annotators expertise; (2) We formulate our approach
using a structural SVM framework, which thus can accom-
modate any active learning criterion or loss function for
measuring importance of different strategies; (3) We dynam-
ically update our strategy given growing observations, thus
being robust to time-varying trend of ground-truth optimal
strategy.

2. Problem Formulation
We define a pool-based multi-class proactive learning
scenario as follows. We have X = {x1, · · · , xN}
and corresponding ground-truth multi-class labels Z =
{z1, · · · , zN}, each of which is identified with a cate-
gory c ∈ C. We are given a pool of annotators K =
{k[1], · · · , k[M ]}, who have expertise in different areas of
the input space with varying degrees. We denote y[m]

n as
a label of xn annotated by k[m] ∈ K. For simplicity we
do not allow duplicate label assignment of a sample by
multiple annotators, thus yn = y

[m]
n and kn = k[m] if xn

has been annotated by some annotator k[m], and null other-

wise. In a semi-supervised setting, we assume a small sub-
set of labeled set L = {(xn, yn, kn) | n ∈ IL} are known
to the learner, where IL ⊂ {1, · · · , N}, and |IL| � N .
The unlabeled learning pool then can be defined as UL =
{(xn, yn, kn) | n ∈ IUL} for IUL = {1, · · · , N} \ IL. The
proactive learning task is then to choose a subset of UL
and a sequence of k ∈ K for each instance that will best
improve the learner performance, under a fixed budget con-
straint B > 0.

We employ a conventional greedy utility maximization ap-
proach (Araya-López et al., 2011; Moon & Carbonell, 2014),
where expected utility of a query is measured from a real-
valued functionU(x, k, L) : X×K×L → R+, for a sample
x ∈ X annotated by an annotator k ∈ K, given a set of data
labeled so far L ∈ L. The objective then reduces to finding
a pair (x, k) with the highest utility at each iteration, which
when annotated, gives the best expected improvement to the
learner, e.g. (x∗, k∗) = argmax(x,k)∈X×KU(x, k, L).

Note that the performance of an active learner thus naturally
depends on how well we estimate the true utility function
of a problem. Next, we describe how we define the utility
function U and learn the most optimal strategy.

3. Dynamic Proactive Learning Framework
We design our DPAL system based upon the structural SVM
(e.g. (Joachims et al., 2009; Yu & Joachims, 2009)). We set
the target utility function as our discriminant function, and
assume that the discriminant function is linear in the feature
vector Ψ(x, k, L), which describes the utility features mea-
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Algorithm 1 Weight Update for DPAL
Input: current w, labeled data L, parameters Q (number
of clusters), G (maximum number of comparing pairs)
Output: Updated w
def updateDPAL(w, L)

Choose L′ ⊂ L by sequential order
Let {Lq}q=1,··· ,Q be Q clusters within L\L′
Generate min(G,

(
Q
2

)
) pairs from {(Li, Lj)}i 6=j

w := argminw
1
2‖w‖

2 + C
N

∑N
n=1 ξn s.t. Eq. 8

return w
end def

sured by multiple strategies (as defined in Section Feature
Space) given a sample x, annotator k, and labeled set L.
Therefore, the objective of the problem at every proactive
learning iteration can be formulated as:

(x∗, k∗)= argmax
(x,k)∈X×K

U(x, k, L)= argmax
(x,k)∈X×K

w·Ψ(x, k, L)

Note that w determines the weighted importance of each
feature (strategy) to the learner, and that Φ is a function of L,
which is subject to change at every iteration. We therefore
learn the best weight distribution w∗ through training and
repeat this process to dynamically adjust weights as the
labeled set L expands. Algorithm 1 explains in detail how
we learn and update the optimal w∗ by leveraging the past
annotation history. At each active learning iteration we learn
a new classifier f using the labeled set L with a support
vector machine with RBF kernels (Cristianini & Shawe-
Taylor, 2000).

3.1. Feature Space

The feature vector Ψ defines various factors or strategies
that account for utility of a query, and thus the exact design
is subject to user’s choice. In this work, we decompose the
feature vector into two main components:

w·Ψ(x,k,L)=α·Φ(x,k,L)+β·Π(x,k,L) (1)

where the first component Φ(x,k,) includes a set of features
that describe the inherent value of sample x in relation to
the currently available labeled set L (e.g. uncertainty (Lewis
& Catlett, 1994), density (Nguyen & Smeulders, 2004; Zhu
et al., 2010), etc.), whereas Π(x,k,L) consists of features
that relate to an annotator k (e.g. probability of obtaining a
correct answer from a labeler (Yan et al., 2014), etc.).

In this work, we choose to decompose the first component
Φ(x, L) = Φ(x, k, L) ∈ R4 into four elements, each of
which measures uncertainty, density, unknownness, and

conflictivity of a sample x, respectively:

Φ1(x, L) = −
∑
c∈C

P (y = c|x;L) · logP (y = c|x;L) (2)

Φ2(x, L) = ρ(x|X) (3)
Φ3(x, L) = −ρ(x|{xn |∀n ∈ IL}) (4)

Φ4(x, L) = −
∑
c∈C

P (y = c|q;L) · logP (y = c|q;L) (5)

where Φ1(x, L) is the entropy of class posterior distribu-
tion of x given a labeled set L which measures uncertainty
(Settles & Craven, 2008), Φ2(x, L) is the inherent density
of samples around x in its distribution, Φ3(x, L) is the un-
knownness of a sample x given the labeled data L that
penalizes local regions that have already been explored,
which we estimate as inverse of observed density of labeled
samples (independent of their labels), and Φ4(x, L) is the
conflictivity of labels within its local cluster q ∈ Q (Moon
& Carbonell, 2014). We estimate density for Eq.3 and Eq.4
with the non-parametric Gaussian kernel method.

The intuition is that at the beginning of active learning phase
w will put a higher importance to Φ2(x, L) and Φ3(x, L)
to encourage exploration, and gradually put more emphasis
on Φ1(x, L) to reduce the global entropy. Φ4(x, L) reduces
the local entropy at conflicting regions (clusters), thus fine-
tuning the decision boundaries towards the end of the active
learning phase.

3.2. Learning
We choose to employ a single-valued metric for the second
component Π(x, k, L), which measures the expected prob-
ability of getting a correct answer given an annotator, thus
Π(x, k, L) ∈ R1. Specifically, we define:

Π1(x,k, L) = P (ans|x, k) (6)

=
1

Zη

∑
c∈C

P (y = c|x;L[k]) · logP (y = c|x;L[k])

whereL[k] ⊂ L is a set of labels annotated by an annotator k,
Zη is an entropy normalization constant, and P (y|x;L[k]) is
the class-posterior probability of an annotator model trained
on the annotation observations by k. Note that if an annota-
tor model is confident of its label, its class-posterior entropy
will be low, and vice versa. The probability P (ans|x, k) of
getting a correct answer for x given k is thus estimated as
negative entropy of class-posterior probability of its annota-
tor model, assuming annotator confidence correlates with
its accuracy. Note that this approach allows for estimation
of P (ans|x, k) without ground-truth samples to compare
against, and that the accuracy of this estimation generally
improves over time as we observe more labels from each
annotator.

In order to learn the optimal vector w in Eq.(1) that rep-
resents the true current weight preference, we leverage
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(b) MNIST
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(c) Covertype
Figure 2. Error rates at normalized cost of queried instances annotated by noiseless labelers, on (a) 20 newsgroups, (b) MNIST, (c)
Covertype datasets.

the most recently annotated data from L. Specifically, we
choose a subset L′ ⊂ L that contains the oldest samples
by their sequential order of annotation, and re-evaluate how
informative the most recent annotations (x, y, k) ∈ L\L′
were, given a model trained on L′. We typically choose
L′ such that |L′|/|L| = 0.8. The learning objective of the
structural SVM (Yu & Joachims, 2009; Kim et al., 2015) is
then:

min
w,ξ≥0

1

2
‖w‖2 +

C

N

N∑
n=1

ξn (7)

s.t.w·(Ψ(xi, ki, L
′)−Ψ(xj , kj , L

′)) (8)
≥∆(xi, ki, L

′),(xj , kj , L
′))−ξi,

∀i 6=j(xi, ki), (xj , kj) ∈ L\L′

where ξn is a slack variable and C is a regularization
parameter, (xi, ki) and (xj , kj) are two samples being
compared drawn from the set L\L′. The loss function
∆((xi, ki, L

′), (xj , kj , L
′)) is defined such that it penalizes

a less optimal pair of the two given L′ that leads to a less sig-
nificant performance improvement (once it is added to L′).
We propose to use the difference in total entropy decrease
as a loss function:

∆((xi, ki, L
′),(xj , kj , L

′)) (9)

= − 1

Zη

∑
n∈IUL

(
η
(
xn|L′ ∪ (xi, yi)

)
−η
(
xn|L′ ∪ (xj , yj)

))
where η is the entropy of class posterior probability of a
sample given a labeled set, and Zη is a normalization con-
stant. In essence, Eq.(9) measures the observed relative
increase in total entropy (uncertainty), thus penalizing a less
optimal choice of a sample and an annotator.

In Eq.(8), (xi, ki), (xj , kj) ∈ L\L′ can be any possible
combination of two instance and annotator pairs, and thus

the size of comparing pairs of (x, k) is exponential. To
cope with this issue, we limit the generation of negative
(x, k) ∈ L\L′ to a fixed number G according to the allowed
computational resource. Another challenge to the proposed
loss function is that performance improvement signal is
often not strong enough when only a single data point is
added to a training set. Therefore, instead of comparing
a pair of single samples per loss computation, we take a
batch approach by first clustering samples in L\L′ by their
proximity in utility space Ψ, and then treating an average
of each cluster as an input to the optimization problem in
Eq.(7). This batch update approach not only boosts improve-
ment signal for more robust loss function computation, but
also further reduces possible combination pairs for faster
optimization. We use alternating optimization that has been
widely used for solving structural SVM problems (e.g. (Lan
et al., 2012; Yu & Joachims, 2009)) at first with random
initialization of w, and update the optimal w periodically
(every 10% budget consumption). For each periodic update
for wt at step t we use the previous weight vector wt−1 as
an initialization point, and add a smoothing regularization
term λ||wt −wt−1||2 to Eq.7.

4. Empirical Evaluation
Below we demonstrate the efficacy of the proposed DPAL
framework on several datasets ((Lecun & Cortes; Lichman,
2013): Table 1) on a proactive learning task against several
baseline methods. The results are averaged over 10-fold
runs for every experiment.

4.1. Task

We evaluate the performance of each baseline in a proactive
learning scenario (Yan et al., 2014; Moon & Carbonell,
2014), given a dataset and a pool of simulated annotators
each with different expertise, as well as in a traditional
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(b) MNIST
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(c) Covertype
Figure 3. Error rates at normalized cost of queried instances annotated with a pool of noised labelers (labeler noise ratio = 0.3 for
non-expertise classes, and 0 for expertise classes.), on (a) 20 newsgroups, (b) MNIST, (c) Covertype datasets.

Table 1. Overview of datasets.
Dataset # Experts # Classes Size

20 Newsgroups 5 20 18846
MNIST 5 10 70000

Covertype 5 10 58000

Table 2. Normalized proactive learning costs at error rate conver-
gence for each dataset with varying DPAL |L′|/|L| ratios. Bold
denotes the best performance for each test, and * denotes the
statistically significant improvement (p < 0.05).

|L′|/|L|
Dataset 0.6 0.7 0.8 0.9

20 Newsgroups 1.13 1.07 1.00* 1.16
MNIST 1.08 0.97 1.00 0.99

Covertype 1.04 1.10 1.00 1.21

active learning scenario given a single noiseless annotator.
We start with a small percentage of labeled samples (0.5%),
and at each iteration each learning algorithm chooses a pair
of a sample and an annotator to expand its labeled samples
pool. The goal is to reach a desired accuracy exhausting
as little budget as possible. We generate multiple class-
sensitive simulated experts for each dataset (as in Table 1)
with varying noise levels, by building classifier models each
of which is trained on a set of samples that has ground-truth
labels for its expertise area and random labels (at a given
noise ratio) for non-expertise areas.

4.2. Baselines

We compare our DPAL method against the following meth-
ods from literature: US (uncertainty sampling; (Settles &
Craven, 2008) for the single annotator scenario, and (Yan
et al., 2014) for the multiple noised annotators scenario),

DWUS (density weighted uncertainty sampling; (Zhu et al.,
2010)), DUAL (exploration-exploitation switch; (Donmez
et al., 2007)), and MCID (multi-class information density;
(Moon & Carbonell, 2014)). The difference between DWUS
and DUAL is that while DWUSmeasures utility of a sample as
multiplicative composition of its entropy and density, DUAL
alternates between uncertainty-based and density-based sam-
pling strategies around an optimal switching point. MCID is
one of the state-of-the-art sampling strategies that combines
DWUS with unknownness and conflictivity as a multiplica-
tive ensemble to better handle multi-classification active
learning problems. Note that most of the referenced papers
for the baselines above do not address optimal selection of
an annotator and a sample given estimated annotator accura-
cies. Therefore, we apply and use as a baseline the approach
proposed by (Yan et al., 2014), which is to first select a sam-
ple based on its distribution-dependent strategy and then to
delegate an annotator with the highest estimated probability
of giving the correct answer for the chosen sample. Unlike
the proactive annotator selection scheme proposed by (Yan
et al., 2014), our DPAL framework directly integrates esti-
mated annotator accuracy with base utility of a sample in a
jointly optimal way. To separate out the effect of DPAL’s
joint selection of annotator-sample pairs, we run our ex-
periments with varying noise levels of annotator expertise,
including a noise-free case (a perfect oracle annotator).

4.3. Results

Main results: Figure 2 shows the active learning curve
at varying amount of annotation cost on different datasets,
when labels were annotated by a single noiseless oracle.
This is a conventional active learning scenario, and thus we
do not consider optimal selection of annotators in this exper-
iment. For most of the datasets, it can be seen that our DPAL
method reaches the accuracy at near convergence faster than
the baselines, significantly saving the budget it requires
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(b) 20 Newsgroups (w/E)
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(c) MNIST
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(d) MNIST (w/E)
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(e) Covertype
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Figure 4. Normalized DPAL weight transitions for (a), (c), (e): a
single noiseless labeler scenario and (b), (d), (f): multiple noised
labelers scenario.

to reach the same accuracy. The baselines which heuris-
tically aims to leverage exploration-exploitation balance
(MCID,DUAL,DWUS) tend to outperform the US baseline
which solely aims to exploit the uncertain samples, how-
ever the performance boost is not as strong as with DPAL.
Among the baselines aside from DPAL, there is no base-
line that consistently wins across the datasets evaluated in
this experiment. Note for example that MCID does not per-
form well on some of the datasets in this case, because the
noiseless labels tend to neutralize the efficacy of the conflic-
tivity term in MCID, which favors to dissolve region around
locally heterogeneous labels. DPAL learns to suppress non-
optimal strategies and balance preferable strategies, leading
to better performance overall.

Figure 3, on the other hand, assumes a proactive learn-
ing scenario, where annotators are simulated with a class-

sensitive noise ratio according to their expertise. A proactive
learner thus tries to assign the most knowledgeable annota-
tor for a chosen sample, although the accuracy of expertise
estimation is not perfect at the beginning, and tends to im-
prove over time. Because annotated samples include noised
labels due to non-optimal expert assignment, it can be seen
that baseline performance is different from Figure 2. This
result indicates that an optimal strategy for a proactive learn-
ing problem is highly dependent on the labelling accuracy
of annotators as well as the inherent distribution of each
dataset. DPAL learns its optimal strategy from the past
annotation history, and thus in general outperforms other
baselines on most of the datasets more consistently. This re-
sult is consistent with the result in Figure 2, which indicates
that DPAL is flexible to incorporate any number of sam-
pling strategies and optimize for the best ensemble weights
given the pool of multiple selection strategies. Note that
in practice one can choose to halt proactive active learning
process at any desired accuracy, as DPAL tends to be more
effective towards the beginning of annotation compared to
other baselines.

Dynamic weight transitions: Figure 4 shows the dynamic
weight transitions for multiple selection strategies (a,c,e:
a single noiseless labeler scenario (same setting as Figure
2), b,d,f: multiple domain experts scenario (same setting
as Figure 3)), normalized to sum to 1 (U: uncertainty, D:
density, K: unknownness, C: conflictivity, E: estimated an-
notator expertise). Note that the different components of the
weight vector outweigh others at different active learning
stages, confirming the observation that there is no single op-
timal active learning strategy consistently dominant (Figure
1). Note also that the optimal weights are different across
the datasets, which shows the need for dynamic weight ad-
justment learned with DPAL rather than with a heuristic
approach. It can be seen that the strategies that encourage
exploration (density, unknownness) tend to be given higher
weights at earlier stages, while the strategies that encourage
exploitation (uncertainty, conflictivity) tend to be more dom-
inant towards the end of the active learning process, which
intuitively is a desirable strategy. The weight for estimated
expertise of annotators is suppressed at the beginning when
expertise estimation is unreliable due to the small number of
labeled samples by each annotator to examine with. Later in
the active learning process the expertise estimation weight
is assigned higher weight, which leads to a more optimal se-
lection of annotators and samples. These weight adjustment
behaviors can explain the efficacy of the DPAL approach as
demonstrated in Figures 2 and 3.

Sensitivity to DPAL hyperparameters: Table 2 shows
the DPAL performance at varying |L′|/|L| ratios (=
0.6, 0.7, 0.8, 0.9), averaged over 10-fold cross validation
runs. Each row represents the normalized proactive learn-
ing cost to reach convergence in error rate for each dataset,
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showing how each configuration saves learning budget com-
pared to others. Intuitively, when |L′|/|L| is lower, DPAL
evaluates the contribution of each sample conditioned on L′

further back in the annotation history, and thus the learned
weights w might not be optimal for current evaluation.
When |L′|/|L| is higher, there is less annotation history
to leverage (L\L′) for learning the optimal strategy, thus
being more prone to over-fitting. We do not observe sta-
tistically significant improvement for any particular ratio
consistent across all of the datasets, and thus for all of our
experiments we simply choose |L′|/|L| = 0.8 which yields
the best average value on the three datasets.

5. Related Work
Exploration-exploitation balance in active learning is
well studied and closely related to our work (Yi Zhang,
2003; Melville & Mooney, 2004; Baram et al., 2004; Osugi
et al., 2005; Bondu et al., 2010; Loy et al., 2012). The main
idea behind these work is that a learning model can quickly
improve its performance by first exploring diverse areas in
its data distribution, and then by “fine-tuning” its hypothesis
hyper-plane via exploitation. For example, (Donmez et al.,
2007) proposes the dual strategy for active learning (DUAL)
which switches between the two alternating policies (uncer-
tainty and density) pivoting around a pre-defined threshold
value. Our approach extends their work in terms of scala-
bility and flexibility because we avoid use of heuristics, and
instead optimize strategy based on stream of observed labels.
(Loy et al., 2012) obtains a similar exploration-exploitation
balance by extending the conventional query-by-committee
(QBC) methods (Seung et al., 1992; Freund et al., 1997;
Mamitsuka, 1998) under a stream-based active learning
setting. More recently, several studies have investigated
active learning in a multi-armed bandit framework (Ganti &
Gray, 2013; Salganicoff & Ungar, 2014), which allow for
exploration in hypothesis space by calculating lower confi-
dence bounds on the risk of pulling each hypothesis. (Moon
& Carbonell, 2016; 2017) apply the idea of exploration-
exploitation on joint transfer and active learning settings, in
which the active strategy selection applies on the high-level
decision of whether to transfer data or to acquire more data.
However, most of these work do not address other diverse
dimensions that can lead to better active improvement, such
as time-varying expertise level of annotators or learner’s
estimation of annotator expertise given a growing number
of observations. Our approach takes into account multiple
strategies of user’s choice, extending the previous work on
exploration-exploitation balance by delving more deeply
and precisely into the question of exactly where in data to
explore, how much to exploit, and by asking whom.

Attention-based learning has been widely applied to var-
ious types of deep neural networks (Xu et al., 2015;

Sukhbaatar et al., 2015; Yao et al., 2015; Moon et al.,
2018a;b). Typically, a simple neural network (e.g. feed-
foward network) with a softmax layer is added as a sub-
module to a model which is used to predict importance
weights of certain parameters of the main model. Our work
is inspired by this line of work, and applies the notion of
attention-based learning to the strategy selection problem
for active learning.

6. Conclusions
We proposed a new approach that dynamically adjusts the
optimal ensemble proactive learning strategy based on the
past annotation history. While conventional active learning
approaches aim to optimize only for the selection of samples
estimated given a static strategy, we optimize for the near-
optimal selection or ensemble of multiple strategies adaptive
to the time-varying progress of the active learner. In order
to achieve this, we designed alternating optimization over
SVM problems where an optimal weight vector combin-
ing multiple strategies can be learned from past anotation
history. We demonstrated that the proposed approach out-
performs or matches the performance of other baselines over
several datasets by dynamically adjusting weights according
to desirable behaviors at each phase.

We note that while the proposed approach learns the opti-
mal strategy for the immediately-next sampling, the myopic
approximation does not always guarantee a global optimum.
Future work will explore different strategies or reward func-
tions that favor more globally-optimal strategies in order to
further improve the performance.
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