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Abstract

The SIMMC challenge at DSTC9 aims to lay the foundations
for multimodal virtual assistant agents that can engage with
the real-world, handle multimodal inputs, and perform mul-
timodal actions. We thus focus on task-oriented dialogs that
encompass a situated multimodal user context in the form of
a co-observed image or virtual reality (VR) environment. The
context is dynamically updated on each turn based on user in-
put and assistant actions. The SIMMC track focuses on three
main subtasks: (1) structural API call prediction, (2) assis-
tant response generation, and (3) dialog state tracking. We
describe these tasks and the respective evaluation metrics for
each task. We also present models that have achieved state-of-
the-art performance on each task. We conclude with a sum-
mary of insights and opportunities for further research arising
from the results of the first SIMMC challenge.

Introduction
The Situated Interactive MultiModal Conversations
(SIMMC) challenge at DSTC9 is based on the recently
proposed SIMMC task and accompanying datasets as
described in (Moon et al. 2020). The goal of these datasets
is to address a gap in the existing field of multimodal dialog
research by focusing on task-oriented dialogs grounded in
the visual context that is co-observed by both speakers, and
evolves as the dialog progresses.

The SIMMC datasets focus on shopping experiences in
the fashion and furniture domains as these experiences pro-
vide a rich interactive context in which task-oriented di-
alogs can be situated. The visual context is either a series of
images—for fashion—or a virtual reality (VR) scene—for
furniture. In both settings the ground truth of which items
are present is known and provided in the dataset, thus allow-
ing modelling efforts to be focused on ingesting and utilizing
semantics about the scene without necessarily having to deal
with raw pixels.

The SIMMC challenge intends to foster progress in the
area of enabling virtual assistants to utilize contexts from
multiple sources, and make progress towards deployment of
such skills in the real world.

*Equal contributions.
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Figure 1: Illustration of a SIMMC dialog: a user and an as-
sistant interact in a co-observed multimodal environment for
a shopping scenario. The dialog is grounded in an evolving
multimodal context. The ground-truth of which items (e.g.,
prefabs) appear is known for each view.

An example of the type of dialog found in the SIMMC-
Furniture dataset is shown in Fig. 1. In addition to respond-
ing to the user, the assistant can update the environment by
selecting multimodal actions in this VR setting, e.g.,

visually presenting recommended chairs ... or respond-
ing to the request “I like the brown one. Show me the
back of it.” by executing the actions of focusing on, and
rotating the indicated item (Moon et al. 2020).

In the above example, elements that contribute to the over-
all novelty of the SIMMC Task, i.e. action prediction and
multimodal coreference resolution, are indicated using ital-
ics and underling, respectively. A further contributor to



Table 1: Comparison with the existing multimodal dialog corpora. Notation: (U ↔ A) Utterance to action pair labels.
(Task-oriented) Includes API action prediction, Q&A, recommendation, item / image retrieval and interaction. (Meta) includes
scene descriptions and/or catalog information of items in the scene. (Semantic) Dialog annotations such as NLU, NLG, DST,
and Coref. (Situated) VR environment and/or new highlighted images.

Dataset Modality Task Provided Context Updated Annotation
Q’er A’er Context Granularity

Visual Dialog (Das et al. 2017) Image Q&A N/A Visual N/A N/A
CLEVR-Dialog (Kottur et al. 2019) Simulated Q&A N/A Visual N/A N/A
GuessWhat (de Vries et al. 2017) Image Q&A N/A Visual N/A N/A

Audio Visual Scene-Aware Dialog (Hori et al. 2018) Video Q&A Key Frames Video N/A N/A
TalkTheWalk (de Vries et al. 2018) Image Navigation Visual Visual + Meta Location U↔ A

Visual-Dialog Navigation (Thomason et al. 2019) Simulated Navigation Visual Visual + Meta Location U↔ A
Relative Captioning (Guo et al. 2018) Image Image Retrieval Visual Visual + Meta New Image U↔ A

MMD (Saha, Khapra, and Sankaranarayanan 2018) Image Image Retrieval Visual Visual + Meta New Image U↔ A

SIMMC (Moon et al. 2020) Image/VR Task-oriented Visual Visual + Meta Situated U↔ A + Semantic

datasets’ novelty is that the assistant’s actions, which are
presumed to be conditioned on the preceding dialog with
the user, may change the co-observed context which in turn
influences the subsequent turns of the dialog.

Related Datasets and Challenges

Tab. 1, adapted from Moon et al. (2020), compares SIMMC
to existing similar VQA and visual dialog datasets and chal-
lenges.

Key differentiators with previous multimodal dialog
datasets are: (a) SIMMC assumes a mutually shared “co-
observed” multimodal context between a user and an assis-
tant. This contrasts with visual question answering (Q&A)
tasks (Das et al. 2017; Kottur et al. 2019; de Vries et al.
2017, 2018) where the questioner (Q’er) and answerer (A’er)
have differing views. (b) SIMMC focuses on task orientated
dialogs and to this end includes semantic annotations that
extend to a multimodal setting areas which have been a key
focus of the dialog literature, such as dialog state track-
ing (DST) and policy learning (Wu et al. 2019; Gao et al.
2019; Chao and Lane 2019). To this end Moon et al. (2020)
proposed an associated SIMMC annotation schema which
“allows for a more systematic and structural approach for
visual grounding of conversations.” (c) In contrast to im-
age retrieval (Guo et al. 2018; Saha, Khapra, and Sankara-
narayanan 2018) and visual navigation tasks (Thomason
et al. 2019; de Vries et al. 2018) where context updates are
limited to introduction of new scenes or images, SIMMC-
Furniture allows agent actions at both scene level and ob-
ject level e.g., changing the view of a specific object within
a scene, while SIMMC-Fashion introduces the concept of
visual memory as part of the preceding context for the dia-
log. (d) The object level manipulations in SIMMC-Furniture
additionally introduce multimodal agent actions e.g., ‘ro-
tate,’, ‘search,’ and ‘add to cart’ not found in tradition task-
oriented conversational datasets (Henderson, Thomson, and
Williams 2014; Budzianowski et al. 2018; Eric et al. 2019;
Rastogi et al. 2019; Chen et al. 2020). (e) SIMMC tasks em-
phasize semantic processing, while work in visual Q&A and
visual dialog has heavily focused on language grounding in
raw image pixels.

Table 2: SIMMC Datasets Statistics. †Additional dialogs in
aural medium where annotators exchanged audio messages
instead of text.

Statistics Furniture (VR) Fashion
(Image)

Text Audio†

Total # dialogs 6.4k 1.3k 6.6k
Total # utterances 97.6k 15.8k 71.2k
Avg # rounds / dialog 7.62 7.16 5.39
Avg # tokens (user) 11.0 N/A 11.10
Avg # tokens (assistant) 12.2 N/A 10.87

SIMMC Datasets
The SIMMC datasets contain about 13k human-to-human
dialogs (totaling about 169k utterances) split across two do-
mains; furniture (VR) and fashion (images). Datasets statis-
tics are shown in Tab. 2; reproduced from (Moon et al.
2020). Both datasets were collected through the SIMMC
Platform (Crook et al. 2019), an extension to ParlAI (Miller
et al. 2017) that enables a multi-player / Wizard of Oz (Kel-
ley 1984) setting for multimodal conversational data collec-
tion, or a single player mode for system evaluation.

The included semantic-level fine-grained annotations
ground the visual context, allowing for a more systematic
and structural study for visual grounding of conversations.
Annotation labeling is centered around atomic objects that
appear in the text, visual context and associated catalogs of
object attributes. This allows for flexible annotation of nat-
ural utterances as well as multimodal coreferences that link
the annotated language with objects in the context.

Task Definitions
We present three subtasks primarily aimed at replicating
human-assistant actions in order to enable rich and interac-
tive shopping scenarios.

Subtask 1: Structural API Call Prediction focuses on
predicting the assistant action as an API call given the di-
alog and the multimodal contexts as inputs. Since accuracy
does not account for the existence of multiple valid actions,



Table 3: Summary of each team’s results on Test-Std split, average of Furniture and Fashion (*Team 5 submitted results only for
Fashion). Best results from each team are shown. (1) API prediction via accuracy, perplexity and attribute accuracy, and, (2)
Response prediction via BLEU, recall@k (k=1,5,10), mean rank, and mean reciprocal rank (MRR). (3) Dialog State Tracking
(DST), via slot and intent prediction F1. ↑: higher is better, ↓: lower is better. ‡ Tied result; within one standard error.

Teams Subtask 1. API Prediction Subtask 2. Response Prediction Subtask 3. DST
Acc↑ A.Acc↑ Perp↓ BLEU↑ MRR↑ r@1↑ r@5↑ r@10↑ Mean↓ Slot F1↑ Intent F1↑

Baseline 79.3 63.7 1.9 0.061 0.145 7.2 19.8 27.3 39.2 62.4 62.1
Team 1 80.2 74.6 2.0 0.105 0.326 21.1 43.6 56.8 18.8 77.8 76.7
Team 2 82.5‡ 69.8 1.8 0.082 0.074 2.5 8.3 13.6 47.7 - -
Team 3 79.4 73.2 - 0.128 0.381 26.3 50.3 61.8 15.5 79.1 78.1
Team 4 81.3‡ 73.9 3.5 0.108 0.673 52.6 87.4 95.1 3.2 78.6 77.7
Team 5* - - - - 0.390 26.7 52.1 66.0 14.8 - -

we use perplexity (defined as the exponential of the mean
log-likelihood) alongside accuracy. To also measure the cor-
rectness of the predicted action (API) arguments, we use at-
tribute accuracy compared to the collected datasets.

Subtask 2: Assistant Response Generation examines the
relevance of the assistant response in the current turn. We
propose two variants of this subtask; (a) a generative ap-
proach (conditional language modeling problem), which
uses BLEU-4 as a proxy for measuring the closeness be-
tween the generated response and the ground-truth response
given in the corpus, and, (b) as a retrieval/ranking problem,
where the model retrieves the ground-truth response from
a pool of 100 candidates (randomly chosen and unique to
each turn). We use recall@k (k = {1, 5, 10}), mean rank,
and mean reciprocal rank as the corresponding metrics.

Subtask 3: Dialog State Tracking (DST) aims to system-
atically track the dialog acts and the associated slot pairs
across multiple turns, as represented in the flexible ontology
developed to represent the SIMMC multimodal context. We
use the intent and slot prediction metrics (F1), inline with
prior work in DST.

Evaluation. For each subtask in this challenge, we enforce
the following priority over the metrics discussed above, de-
signed to highlight the desired model behavior. Refer (Moon
et al. 2020) for an elaborate discussion on evaluation.

• Subtask 1: Action accuracy, action attribute accuracy, ac-
tion perplexity

• Subtask 2: (Generation) BLEU-4, (Retrieval) mean re-
ciprocal rank, recall@k (k = {1, 5, 10}), mean rank

• Subtask 3: Slot F1 score, Intent F1 score

The entry with the most favorable (higher or lower) per-
formance on the first metric is labelled as a winner candi-
date. Further, all other entries within one standard error of
the winner candidate’s performance are also considered as
candidates. If there are more than one candidate according to
the metric, we move to the next metric in the priority list and
repeat this process until we have a single winner candidate,
which is declared as the subtask winner. The declaration of

winners and runners up is made on a per team basis, consid-
ering only the best performing model submitted by that team
for that subtask.

Baselines and Submitted Systems
The challenge saw a total of 13 model entries from 5 teams
across the world. We describe the major modeling decisions
of these teams in this section and provide a comparative
summary in Tab. 4. For more details please refer to the ref-
erenced teams’ papers.

Baselines In our analysis, we use the baselines from
(Moon et al. 2020) to compare the performance of the sub-
mitted challenge entries. At a high level, Moon et al. (2020)
develop a joint conversational model for subtask 1 and sub-
task 2, and model subtask 3 separately. For the former, they
follow a pipeline architecture to (a) encode the user utter-
ance and dialog history, (b) fuse it with the multimodal
context, (c) predict the API call for the turn, and finally,
(d) produce the assistant response using a conditional lan-
guage model. For the latter, an end-to-end task-oriented di-
alog model (Hosseini-Asl et al. 2020) is adopted and ex-
tended to ingest the multimodal context, and predict the in-
tent and slot values as a classification problem. Please see
(Moon et al. 2020) for more details.

Team 1 (Kung et al. 2020) submitted an ensemble of
GPT-2 models trained jointly on all three subtasks and
across both domains. Specifically, they added a discrimina-
tive classifier consisted of multiple fully connected layers
for subtask 1 (API Prediction), while keeping subtasks 2a
(Response Generation) and 3 (DST) as generative tasks, fol-
lowing the baseline provided by (Moon et al. 2020). For
the response retrieval subtask 2b, they ranked the retrieval
candidates based on their BLEU and METEOR similarity
scores with the generated responses from subtask 2a. In ad-
dition, auxiliary features as input such as segment embed-
dings were used to better leverage the visual information.

Team 2 (Kim et al. 2020) submitted an ensemble of mod-
els based on the baselines (Moon et al. 2020) released as
part of the competition. While the baselines model subtask
1 and 2 jointly and subtask 3 separately, team 2 used the pre-
dicted dialog state outputs from subtask 3 baseline as inputs
for subtasks 1 and 2. Additionally, they used two sophisti-



Table 4: Summary of submitted models. Notation: Sub. is the subtasks for which results were submitted. MM Rep. is the
method used for ingesting MultiModal context. Descrim. Train indicates if discriminative model training on positive and nega-
tive candidates was used. Model Rank is the raw ranking using the top metric for that subtask without consideration of standard
error and thus should be considered as only providing an indicative ordering. *Team 5 submitted results only for Fashion. Rank
in parenthesis is for Fashion only. MM Fusion Ensembles A, B, C are each different combinations of baseline and multimodal
fusion models. MAG / MMI specialized multimodal fusion gates; MAG (Rahman et al. 2020) and MMI (Yu et al. 2020). S, M,
and L indicate GPT-2 small, medium and large models, respectively. L(t) is GPT-2 Large trained on train set only, others are
trained on train and dev sets. FC indicates additional full-connected layers. BLEU/METEOR and cosine sim. indicate generative
models adapted to the retrieval task (2b) by using BLEU/METEOR or cosine similarity metrics to measure the distance between
retrieval candidates and the model’s predicted response.

(a) Summary of models submitted for Subtasks 1, 2a and 3; API Prediction, Response Generation and DST.

Teams Models Sub. Joint Train Ensemble Pretrain MM Rep. Model Rank
subtasks x-domain sub1 sub2a sub3

Team 1 GPT-2 + FCs 1, 2a, (2b), 3 1, 2a, 3 yes yes GPT-2 stringified 4 5 5

Team 2 MM Fusion Ensemble A 1 1, 2a no yes – MAG / MMI 1 · ·
MM Fusion Ensemble B 2a 1, 2a no yes – MAG / MMI · 7 ·

Team 3

GPT-2 (M + S) 1 1, 2a, 3 no yes GPT-2 stringified 5 · ·
GPT-2 (L + L(t)) 2a, (2b), 3 2a, 3 no yes GPT-2 stringified · 3 2
GPT-2 (L + S) 2a, (2b), 3 2a, 3 no yes GPT-2 stringified · 1 1

GPT-2 (L + L(t) + S) 2a, (2b), 3 2a, 3 no yes GPT-2 stringified · 2 3

Team 4 BART-Base 1, 2a, 3 1, 2a, 3 no no BART stringified 3 6 6
BART-Large 1, 2a, 3 1, 2a, 3 no no BART stringified 2 4 4

(b) Summary of models submitted for Subtask 2b; Response Retrieval.

Teams Models Sub. Joint Train Ensemble Pretrain MM Rep. Descrim.
Train

Model
Ranksubtasks x-domain

Team 1 GPT-2 + FCs + BLUE/METEOR 2b 1, 2a, 3 yes yes GPT-2 stringified no 6 (7)

Team 2 MM Fusion Ensemble C 2b 1, 2a no yes GPT-2 MAG / MMI no 7 (8)

Team 3 GPT-2 (L+L(t)) + cosine sim. 2b 2a, 3 no yes GPT-2 stringified no 5 (5)
GPT-2 (L+S) + cosine sim. 2b 2a, 3 no yes GPT-2 stringified no 4 (6)

GPT-2 (L+L(t)+S) + cosine sim. 2b 2a, 3 no yes GPT-2 stringified no 3 (4)

Team 4 BART-Large Bi-Encoder 2b 2b no no BART
adapted

on 1, 2a, 3

stringified yes 1 (1)
BART-Large Poly-Encoder 2b 2b no no stringified yes 2 (2)

Team 5* BERT + log-likelihood 2b 2b no no BERT stringified no - (3)

cated multimodal fusion models designed for transformer
architectures—MAG (Rahman et al. 2020) and MMI (Yu
et al. 2020) in their implementation—to fuse the predicted
dialog state with the utterance encoding at the current turn.
The final predictions from the ensemble was obtained by
averaging the individual model scores for subtask 1 and 2.
Though this augmentation hurt their performance for sub-
task 2, their model achieved a gain of about 3 points on ac-
tion accuracy and 6 points on action attribute accuracy for
API call prediction (subtask 2).

Team 3 (Jeong et al. 2020) submitted a varied set of en-
sembles of GPT-2 (Radford et al. 2019) models that were of
differing sizes (large, medium and small) and trained on dif-
fering partitions of the training data; train only, or train plus
dev. For the ensemble submitted for subtask 1, each GPT-
2 model was independently trained on three joint tasks—
subtask 1, subtask 2a and subtask 3—using a simple lan-
guage model loss that optimized over the concatenated string
containing the dialog history, multimodal context, user utter-
ance, dialog state, system response, and API call. This model

can predict all three subtasks on which it was trained but
it’s results were only submitted to subtask 1. In the ensem-
ble submitted for subtasks 2a and 3 each GPT-2 model was
again independently trained with a simple language model
loss but only on the joint tasks of subtask 2a and subtask 3,
i.e., the above concatenated string excluding API call. For
subtask 2b the generated response of the model trained on
subtask 2a and 3 was compare to each candidate response
using word tokenization and cosine similarity to select the
response. For all models the dialog state representation was
preprocessed to remove camel-case and non-natural punctu-
ation before training. An ensemble beam search over each
model’s prediction was used to generate the final prediction.

Team 4 (Huang et al. 2020) submitted two BART (Lewis
et al. 2020) models (BART-Large and BART-Base) for sub-
tasks 1, 2a, and 3. Both were trained to jointly predicted
the dialog state (subtask 3), API call (subtask 1) and re-
sponse (subtask 2a) as a single string target when given
the dialog history, multimodal context and user utterance.
For response retrieval they submitted two BART-encoder



based models; Bi-encoder and Poly-encoder (Humeau et al.
2020; Mazaré et al. 2018; Dinan et al. 2019). In both of
these models the encoder weights were initialized from the
jointly trained BART models trained on subtasks 1, 2a, and
3. This gave a combination of four models on this subtask,
i.e., BART-Large or BART-Base with Bi-encoder or Poly-
encoder. We, however, only include results for BART-Large
Bi/Poly-encoders. Model weights were then adapted to the
retrieval task.

Team 5 (Senese et al. 2020) submitted a BERT-based
model addressing the Assistant response retrieval task (sub-
task 2b), trained using the cross-entropy loss. Specifically,
the submitted model includes a self-attention module, an
encoder-decoder attention module, and an item-attention
module. At inference time, the log-likelihood of each can-
didate response (given the input utterances and multimodal
context) is calculated for each token. To rank the candi-
date responses, two scoring modules were used: (1) normal-
ized sum of log-likelihood scores for each token (to avoid a
scoring bias towards short responses), and (2) token match
rate of the annotated item attributes in each candidate re-
sponse. Candidate responses with the highest sum of these
two scores were used as final predictions.

Challenge Results
The submitted entries set new state-of-the-art in all three
subtasks as summarized in (Tab. 3).

The winner of the structural API call prediction sub-
task (subtask 1) was the BART-Large model from Team 4.
This model was also one of two runners up on subtask 2a,
and the runner up on subtask 3.

The winner of the response retrieval subtask (subtask
2b) was the BART-Large Bi-encoder from Team 4. This
model achieved a mean reciprocal rank (MRR) of 0.67, beat-
ing their BART-Large Poly-Encoder model by 0.02 points,
and with a substantial lead of 0.29 points compared to the
runner up team on this subtask.

The winner of the response generation and DST sub-
tasks (subtask 2a and subtask 3) was an ensemble of GPT-
2 models from Team 3.

Performance Analysis
In this section, we analyze the performance of model entries
by breaking it down across several aspects for each subtask.

Subtask 1: Structural API Call Prediction. Fig. 2a
shows the breakdown of API prediction accuracy for
each team by action type for both SIMMC-Furniture and
SIMMC-Fashion. The key observations are:

• All teams successfully predict the AddToCart and
SpecifyInfo actions with 90% and 95% accuracy
respectively, for both the domains. This is intuitive as the
models seem to pick up on important cues informing the
user intents for these particular API calls. For example,
“Can you please add this to my cart?” clearly indicates
the intention to add the discussed product to the cart. Sim-
ilarly, “What is its price and customer rating?” denotes a
request to provide additional information about the prod-
uct under discussion.
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(a) Breakdown of the API Call Prediction accuracy (subtask 1) ac-
cording to actions.
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(b) Breakdown of instances categorized based on whether all or
none of the participating model entries accurately predicted the
ground-truth API call.

Figure 2: Analysis of the competition entries for API Call
prediction (Subtask 1). See text for more details.

• On the other hand, all models perform poorly on
NavigateCarousel and None actions for SIMMC-
Furniture, and SearchMemory for fashion. The accu-
racy for these actions are in the 20%–40% range for
most models. A possible explanation is due to the equally
valid choice betwen either showing items from the catalog
with existing filters (mapped to SearchFurniture or
SearchDatabase) or requesting more information to
refine the search (mapped to None).

• Notice that the models from both team 4 (winner) and
team 2 (runner-up) perform closely with respect to the
API call prediction task, as seen from an overall accu-
racy of 81.3% and 82.5% (Tab. 3). The winner has been
declared based on the API action attribute accuracy.
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(b) Breakdown of Assistant Response Generation BLEU-4 score
(subtask 2) according to actions.

Figure 3: Analysis of the competition entries for Assistant
Response Generation (Subtask 2). See text for more details.

Further, we identify instances on which all and none of
the competition entries were able to accurately predict the
corresponding ground-truth API call. We breakdown each
of these instance categories further into the ground-truth ac-
tions in Fig. 2b. For SIMMC-Furniture, the all and none
categories compose 62% and 8% of all the test instances, re-
spectively. The corresponding numbers for SIMMC-Fashion
are 77% and 10%. Using these categories as weak indicators
of easy and hard instances for subtask 1, one could con-
clude that SIMMC-Furniture contains a smaller percent of
both easy and difficult instances when compared to SIMMC-
Fashion. Finally, Fig. 2b also provides additional evidence
for the trends observed earlier.

Subtask 2: Assistant Response Generation. We analyze
the performance of models by comparing BLEU-4 scores
(generation category) based on: (a) length of ground-truth
assistant utterance in Fig. 3a, and (b) corresponding ground-
truth API call in Fig. 3b. Following are the takeaways:
• As expected, BLEU-4 score decreases with the length of

the utterances for both the domains on an average.
• Though the smoothing for BLEU-4 contributes partially

to the low values for utterance lengths of 1–3, a good pro-
portion of these utterances contained information about
the catalog item, e.g., price and dimension. On further in-
vestigation, we found that most of the models were unable
to correctly respond with these attributes. This highlights
the need for a better catalog integration with the response
generation model.

• Comparing BLEU-4 scores for the action AddToCart,
models perform better on SIMMC-Fashion on an average

compared to SIMMC-Furniture. This could be due to a
larger percent of AddToCart in the former (18%) when
compared to the latter (3%), leading to this discrepancy.

• The BLEU-4 score for SpecifyInfo is lower than the
overall score for all the models. Once again, this points to
the need for a better modeling of the catalog information.
Examples of model responses for SpecifyInfo by the
winner and runner-up team are given in Tab. 5.
Another important distinction between the winner (Team

4) and the rest of the entries (and baseline) is the use of
discriminative training for the assistant response generation.
Specifically, their loss function trains to not only increase the
likelihood of ground-truth response (similar to a language
model) but also to decrease the likelihood of other assistant
response targets in the batch, which act as negative exam-
ples. This results in a superior performance in the subtask 2
(retrieval category), where the former outperforms the rest
by at least 26 points on the recall@1 metric (Tab. 3).

Subtask 3: Dialog State Tracking (DST). Fig. 4a shows a
breakdown of the DST results based on slot types, for the en-
tries summarized in Tab. 3. Specifically, we report F1 scores
for attribute slot types that describe objects (e.g., “How
many [O.color green] ones do you have?”) or intents (e.g., “I
am looking for [.intendedRoom bedroom] lamps”), and for
object slots, which represent object indices that correspond
to their parent intents (e.g. “[DA:REQUEST:GET:TABLE
Please add [TABLE 1 it] to the cart.]”) The object slot pre-
diction task thus can also be framed as multimodal corefer-
ence resolution problem. It can be seen that the F1 scores for
attribute slots have higher variances across different entries
compared to those for object slots. This result shows that the
different approaches proposed by each team had relatively
small influences on the multimodal coreference resolution
performance.

Fig. 4b and Fig. 4c show the object slot F1 tracking snap-
shots at varying turn indices as cohorts, averaged over the
dialogs, for SIMMC-Furniture and SIMMC-Fashion respec-
tively. For both domains, we observe that the object slot F1
performances decrease in general as more objects are men-
tioned and introduced in the multimodal context. Note that
none of the proposed models showed significant improve-
ment over other baselines in suppressing the degradation in
the object slot prediction performances over time.

What We Learnt From the Challenge
Pretrained language models show promise in multi-
modal settings. The strong performance of pretrained
language models such as GPT-2 and BART when adapted to
these task indicate that such models are flexible enough to
be able to ingest relatively simple multimodal context and
thus can be used in a multimodal setting with a high degree
of success.

Multimodal context helps but gaps remain. Moon et al.
(2020) showed that the availability of multimodal context
does boost performance on subtask 3 (DST). Although not
directly addressed by these sets of results, we believe that
modeling multimodal context boosts performance across



Table 5: Examples of assistant responses generated by the winner (Team 3) and runner-up (Team 4) for subtask 2a from SIMMC-
Furniture, where the ground-truth API call is SpecifyInfo, i.e., seeking information about catalog items. The category of
examples compared to the ground-truth assistant response is mentioned in the last column.

Ground Truth Winner (Team 3) Runner-up (Team 4) Category
It is reasonable priced at
$69.99.

The price is $69.99. It is priced at $69.99 Both models predict the right
attributes

It’s $48.00. It is $135.99. It is $82.81. Both models are incorrect

The dimensions for that one is
53.5”×30”×36”(L×W×H)

The dimensions are Width 60 Depth 44.92
Height 44.33

The dimensions are 60”W ×
44.92”D × 44.33”H.

Both models are incorrect but
consistent with each other

The width is 18, depth 15.06
and height is 16.5.

It is 18 inches wide, 15.06 inches deep and
16.5 inches high.

The dimensions are 18.5”W×
15.5”D × 35.5”H.

Winner model is correct
while the runner-up is
incorrect

Sure. Dimensions are 86 ×
37 × 32 inches and cost is
$829.

This sofa is made by Jarrard. If you would
like to know details such as price or see a
different angle, tell me and I can show you.

This is the Jarrard Sofa. It has
tapered wood legs and a plush
back.

Both models respond with
mismatched attributes about
the catalog items

(a) F1 per slot types (Average) (b) Object F1 for SIMMC-Furniture (c) Object F1 for SIMMC-Fashion

Figure 4: Analysis of the competition entries for Dialog State Tracking (Subtask 3). (a) Breakdown of Slot F1 results according
to slot types (object & attribute slots). (b) Average object slot tracking results at varying turn indices for SIMMC-Furniture and
(c) for SIMMC-Fashion. See text for more details.

all of the subtasks. However: (1) DST metrics show that
accuracy falls off with increasing dialog length. Given that,
especially in SIMMC-Furniture, the multimodal context
provides a grounded set of items which are likely to be
the most salient in each turn, this results suggest that
the models are not necessarily taking full advantage of
context provided. (2) Relatively low BLEU scores for
response generation (subtask 2a) indicate there remains a
significant opportunity for improving assistant response
prediction. This is further reinforced by the indication that
discriminatively trained retrieval models on subtask 2b
demonstrate much better performance than the generative
models that match candidates based on similarity to a
generated response or model loglikehood score.

Need for a better and scalable catalog integration. Eye-
balling the generated responses, given in Tab. 5, indicates
that these models are powerful enough to avoid returning
bland and safe responses (often observed in generative
models (Li et al. 2015)) but fail to reliably integrate catalog
information. This maybe indicative of a failure of model
architectures to utilise the additional context available from

the catalog or a more general problem with utilisation
of multimodal context in response generation. Better and
scalable multimodal integration for catalog information is
crucial in task-oriented settings where systems are expected
to relay accurate information to users.

Scaling up multimodal complexity. An additional area for
future investigation is to examine the related question of how
well does the simple ‘stringified’ approach to ingesting mul-
timodal context handle increasing complex scenarios as the
number of items in the scene increases and thus format be-
come increasing long and potentially increasing nested.

Conclusion
Through the organization of the SIMMC Challenge in
DSTC9, we aim to motivate the research community to con-
sider the important problem of situated and interactive mul-
timodal task-oriented conversations, which paves the ways
towards virtual assistants that can handle many everyday,
real-world applications. We hope that the insights gained
throws light on the challenges of such multimodal dialogs
and inspires multiple follow-up lines of research.
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