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Abstract

With ever increasing interest in task-oriented dialog systems,
the recent work on Situated and Interactive Multimodal Con-
versations (SIMMC 2.0) aims to develop personal assistants
that interact with users, grounded in an immersive and co-
observed setting of photo-realistic scenes. The dataset con-
tains 11k task-oriented dialogs set in an interactive shopping
scenario, spanning more than 117k utterances.

To further enable research in this direction, the SIMMC 2.0
challenge' was held at the Tenth Dialog System Technology
Challenge (DSTC) that saw entries from across the world
competing to achieve the state-of-the-art performance in the
SIMMC 2.0 task. In this paper, we describe and compare 10
SIMMC 2.0 models to better understand and summarize the
current lay of the land for multimodal task-oriented dialog
systems. We hope that our analysis throws light on compo-
nents that showed promise in addition to identifying the gaps
for future research towards this grand goal of an immersive
multimodal conversational agent.

Introduction

Virtual assistants have a massive potential to positively im-
pact and augment user’s everyday life. To expand their scope
of application, such assistants need to be multimodal and
support users’ queries grounded in their surroundings. Sit-
uated and Interactive Multimodal Conversations (SIMMC)
(Moon et al. 2020; Kottur et al. 2021b) are a step towards this
end, where the conversational agent is expected to model a
multimodal environment (virtual or images), in addition to
reasoning over the dialog history and process queries issues
by the user.

To encourage research, the Situated and Interactive Mul-
timodal Conversations (SIMMC) challenge (Moon et al.
2020; Kottur et al. 2021a) was held as part of DSTC9 (Gu-
nasekara et al. 2020) in 2019. The first edition of the compe-
tition saw participation from over 5 teams (13 model entries)
across the world establishing state-of-the-art performance
on SIMMC dataset (Kung et al. 2021; Kim et al. 2021; Jeong
et al. 2021; Huang et al. 2021; Senese et al. 2021). Propelled
by the success of the SIMMC challenge, a second version of
the challenge has been organized grounded in an improved
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Figure 1: Example from the Situated Interactive Multimodal
Conversation (SIMMC)(Kottur et al. 2021b) that shows
a task-oriented user<—»assistant dialog grounded in a co-
observed multimodal context. Figure: Kottur et al. (2021b).

SIMMC 2.0 dataset. The newer dataset serves as a new
benchmark for studying conversations grounded in an im-
mersive and co-observed virtual environment (through view-
point screenshots), closer-to-real world context for a fashion
or furniture shopping scenario, moving away from the san-
itized contexts present in the original SIMMC dataset. See
Fig. 1 for an exampe dialog from SIMMC 2.0 dataset, com-
paring it to the simple and sanitized multimodal contexts
present in the original SIMMC dataset.



Task Name Goal

Evaluation

1. Multimodal Disambiguation

Given user utterances, classify if the assistant should
disambiguate in the next turn.

Binary classification accuracy

2. Multimodal Coreference
Resolution (MM-Coref)
catalog.

Given user utterances with object mentions, resolve ref-
erent objects to their canonical ID(s) as defined by the

Coref Precision / Recall / F1

3. Multimodal Dialog State

Tracking (MM-DST) multiple turns.

Given user utterances, track user belief states across

Intent Accuracy, Slot Precision / Re-
call / F1

4. Response Generation

from a candidate pool.

Given user utterances, ground-truth APIs and ground-
truth object IDs, generate Assistant responses or retrieve

Generation: BLEU;
Retrieval: Accuracy @k, mean recip-
rocal rank, mean rank

Table 1: Proposed tasks and descriptions on SIMMC 2.0 dataset. Please see text for more details. Table: Kottur et al. (2021b)

Total # dialogs 11,244
Total # utterances 117,236
Total # scene snapshots 1566
Avg # words per user turns 12
Avg # words per assistant turns 13.7
Avg # utterances per dialog 10.4
Avg # objects mentioned per dialog 4.7
Avg # objects in scene per dialog 19.7

Table 2: SIMMC 2.0 Dataset Statistics

SIMMUC 2.0 Challenge Details
Datasets

For this challenge, we use the SIMMC 2.0 dataset (Kot-
tur et al. 2021b). The dataset contains 11.2k dialogs to-
talling 117k+ utterances, grounded in 1.6k scenes. This is
then split into 4 sets: train (65%), dev (5%), dev-test
(15%), and test-std (15%). Annotations have been pub-
licly released for the first three splits, while those for the last
split are hidden and used for challenge purposes to compare
performances of different entries.

Annotations

Due to its synthetic nature, the SIMMC 2.0 dataset has a
wide-range of annotations including dialog and utterance-
level acts, multimodal coreferences, disambiguation, and di-
alog state tracking. These annotations are used as golden
standard for several tasks in the SIMMC 2.0 challenge.

Data and Annotation Analysis.

The dataset contains 4 dialog acts (INFORM, CONF IRM,
REQUEST, ASK) and 5 activities (GET, DISAMBIGUATE,
REFINE, ADD_TO_CART, COMPARE), whose distributions
are given in Fig. 2. Tab. 3 contains examples illustrating
these dialog acts and activities. Please see (Kottur et al.
2021b) for further analysis of the data along with the avail-
able annotations.

Tasks and Evaluation

SIMMC 2.0 proposes four different tasks to measure and
benchmark performance of a task-oriented dialog agent that
can interest with users in an immersive and situated envi-
ronments. We briefly describe these tasks, see Tab. 1 for a
summary.
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Figure 2: Distribution of dialog acts and activities for
SIMMC 2.0. Figure from (Kottur et al. 2021b).

Dialog Activity Example
Act
ASK GET U: I'd like to know the brand and cus-

tomer rating of that please.

CONFIRM ADD_TO A: Got it! You will have them in your

_CART cart in a moment.
GET A: It’s made of leather and has a rating
of 3.1.

TNEORM DISAMB- U:I'mtalking about the brown chair in

IGUATION the back and the black chair just behind
the divider.

REFINE U: How about anything in size M?

COMPARE  A: Of course! The black jacket is shown
in a large size, and the grey and white
one in XS.

GET U: Do you have a nice black dress
here?

DISAMB- A: Sorry, which one would you like to

IGUATION know about?

ADD_TO U: Let’s put the pink one in my cart

_CART along with the black one up above it.

COMPARE  U: What'’s the difference in ratings on
the light grey coat on the left up front
and the black on the right wall?

REQUEST

Table 3: Examples for valid combinations of dialog acts and
activities in SIMMC 2.0. Please see (Moon et al. 2020) for
definitions.



(Subtask 1) Multimodal Disambiguation This task fo-
cuses on identifying whether a given user turn contains am-
biguity in referencing to objects in the scene. Based on this,
the assistant can trigger a disambiguation request to elicit
further details about the object of user‘s choice. As defined
in (Kottur et al. 2021b), given the dialog history and the cur-
rent user utterance, multimodal disambiguation requires the
agent to predict a binary label conditioned on the multimodal
context, to indicate the presence of a referential ambiguity in
the user utterance. We use accuracy to measure and compare
model performances for this task.

(Subtask 2) Multimodal Coreference Resolution As the
name suggests, this task requires the dialog system to re-
solve referential mentions in user utterances to their canoni-
cal object IDs as defined for each scene. These mentions can
be resolved through (1) the dialog context (e.g. A: ‘This shirt
comes in XL and is $29. — U: ‘Please add it to cart.,
or (2) the multimodal context (e.g. U: ‘How much is that
red shirt?”), or (3) both (e.g. U: ‘How much is the one next
to the one you mentioned?’). The input for this task includes
the ground-truth bounding boxes defining each object ID, to
avoid the performance bottleneck by the object detection al-
gorithms. The main evaluation metric includes F1, precision
and recall performance.

(Subtask 3) Multimodal Dialog State Tracking Kottur
et al. (2021b) extend the traditional notion of the unimodal
dialog state tracking (DST) and propose multimodal dialog
state tracking (MM-DST) as a main sub-task where slots are
grounded on the coexisting multimodal context, which re-
quires handling of multimodal objects (as opposed to textual
tokens) as part of dialog states. The performance is mea-
sured by the joint F1, recall and precision performance for
the cumulative intent, slot and object reference predictions.

(Subtask 4) Assistant Response Generation The goal
of this task is to generate assistant responses or retrieve
from a candidate pool, given user utterances, ground-truth
belief state, and object IDs. While we assume the assis-
tant agent has the ground-truth meta information on each
object, each response needs to naturally describe the ref-
erent objects as observed and understood by the user
through the co-observed scene or the dialog context (e.g.
INFORM:RECOMMEND (OBJ_ID: 3) — A: “I recom-
mend the blue shirt directly behind the brown jacket.”.

There are two ways to evaluate the performance of sys-
tems for response generation: (a) As a retrieval task, where
the agent has to pick the ground truth response from a list
of candidate responses (generated randomly; unique to each
utterance). We use traditional information retrieval metrics
like recall@k (k = {1,5,10}), mean rank, and mean recip-
rocal rank for comparing model performances. (b) As a gen-
eration task, where the agent is seen as conditional language
model. Performance is measured using BLEU-4 score (Pa-
pineni et al. 2002) between the generated response and the
ground truth response provided with the dataset.
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Figure 3: Illustration of the GPT-2 based baseline, which
takes as input the dialog context and the flattened multi-
modal context, and outputs the belief states as well as the
system response.

Baselines

There are two baselines, adopted from (Kottur et al. 2021b):
(a) MM-DST model by Moon et al. (2020), where we train
a multi-task GPT-2 (Radford et al. 2019) based Transformer
model using the joint supervision signals for the Disam-
biguation, MM-Coref, DST, and Response Generation tasks.
Specifically, the model takes as input the dialog context and
the flattened multimodal contexts (as structurally formatted
strings) to predict the belief states and the responses, follow-
ing the popular causal language model approach (Peng et al.
2020; Hosseini-Asl et al. 2020). We use the 12-layer GPT-2
(117M parameters) as the pre-trained language model and
fine-tune for ten epochs. Note that this baseline uses the
ground-truth multimodal contexts provided from the scene
generator, instead of consuming raw images as input, and
thus serves as a soft oracle on the proposed dataset.

(b) Multimodal Transformer Network (MTN) (Le et al.
2019) for the DST and Response Generation tasks. In partic-
ular, MTN uses image features extracted from scene snap-
shots and attends to relevant parts as guided by the dialog.
We use the same training setting and hyperparameters as Le
et al. (2019).

Survey of Submitted Systems

We now provide brief description of the entries submitted to
the SIMMC 2.0 challenge. A summary is provided in Tab. 4.

Team 1 uses a larger GPT-2 model with a similar archi-
tecture to the baseline, trained using multi-task learning on
all the subtasks. Further, beamsearch of size 2 and 3 are used
to improve generation capabilities. Finally, retrieval is per-
formed using cosine similarity between the context query
vector and candidate encoding.

Team 2 did not release their implementation, thus details
about their approach are not public.

Team 3 uses a BART-based encoder-decoder framework.
Specifically, the multimodal context of scene context de-
scriptions (name ID, bounding box & position of objects,
etc.) are encoded through the Bi-encoder & the Poly-
encoder. The model is then trained to output all of the dis-



Team Models Joint (Pre)Train Ens L;n/[ngdu:llge MM Rep. Subtask Ranks
subtasks ode 1 2 3 4a 4b
Team 1 GPT-2 + Beam Search 2,3, 4a,4b no GPT-2 (large) stringified . 9 4 3 3
ca GPT-2 + Beam Search 2,3, 4a, 4b no GPT-2 (large) stringified .9 4 4 3
Team 2 did not open-source (D)
Team 3  BART+Poly-Encoder 1,2,3,4b no BART stringified 4 11 4 2 4
Team 4 BART 1,2,3,4b no BART object token 2 1 2 1 2
Team 5 BERT + ELECTRA 2,3, 4a,4b no BERT stringified 2 8 3 5 1
BERT + ELECTRA 2,3, 4a,4b yes BERT stringified . . . . 1
Team 6 BART+ResNet (Ensemble) 2,3,4b yes BART stringified (ResNet) 1 6 1 2)
BART+ResNet 2,3, 4b no BART stringified (ResNet) 1 . . .
Team 7 TOD-BERT no TOD-BERT - 3
LXMERT no LXMERT LXMERT -7
1: (UC+SM+MVM) 1,2,3,4b no RoBERTa/GPT-2 DelT 3 5 5 2
Team 8 2: (SM) 1,2,3,4b no RoBERTa/GPT-2 DelT . 5 .
ca 3: (UC+SM+MVM w/o MI) 1,2,3,4b no  RoBERTa/GPT-2 DelT 4
1+3 1,2,3,4b no  RoBERTa/GPT-2 DelT 3
Team 9  UNITER + Scene Graph 2b no UNITER UNITER 2
Team 10 GLIMMeR 1,2,3,4b yes GPT-2 stringified - 10 -
e GLIMMEeR (Ensemble) 1,2,3,4b yes GPT-2 stringified 2 3 4 1

Table 4: Summary of the developed models for Subtasks 1, 2, 3, 4a and 4b.

ambiguation label, belief state and the assistant response in
a single string.

Team 4 proposes a universal transformer model that uti-
lizes the dialog context as well as the multimodal con-
text (object knowledge base and visual scenes) to deter-
mine whether an object is mentioned in the current utter-
ance. Specifically, object token embeddings are represented
by taking as input the object index, object locations, etc. The
model is then fine-tuned for each of the task.

Team 5 uses ELECTRA finetuning approach (Clark et al.
2020), which uses discriminative signals instead of gener-
ative signals on BERT architecture. Specifically, the model
is finetuned by discriminating between a ‘real’ and a ‘fake’
input token.

Team 6 proposes a ROBERTa model for sub-taskl, and a
BART model approach for sub-tasks 1 through 4 with the
ResNet fine-tuned to predict visual metadata. The predicted
visual metadata is then converted into a sequence of word
tokens representing the multimodal context. The dialog his-
tory and the multimodal context are then given as input to the
causal language model (BART) that sequentially predicts the
labels for subtasks 2, 3 and 4.

Team 7 proposes a TOD-BERT model for sub-task 1 fine-
tuned for the binary classification, and a LXMERT-based
model for sub-task 2. For each of the objects, visual fea-
ture is extracted by combining bounding boxes, Rol features
and object positional embeddings through several linear and
normalisation layers. These visual features are then com-
bined with the BERT sentence embeddings. The model then
is trained to predict the likelihood of a sentence referencing
a particular object.

Team 8 proposes a multimodal model composed of a
RoBERTa model that encodes the textual representation of

a multimodal object, and a DelT model (Touvron et al.
2012) that encodes the visual representation. The multi-
modal model is first pre-trained to learn the relationship
between the two modalities, with object candidates pooled
from ‘mention_inform* (MI). Total three main objectives
were proposed for loss propagation: utterance classifica-
tion (UC), system matching (SM), and meta-visual matching
(MVM). The model is then fine-tuned for each sub-task.

Team 9 proposes a UNITER-based model (Chen et al.
2020) that utilizes the dialog context as well as the multi-
modal context (object knowledge base and visual scenes)
to determine whether an object is mentioned in the current
utterance. Specifically, object token embeddings are repre-
sented by taking as input the object index, image pixels, KB
entities, and the indicators of whether an object has been
mentioned before.

Team 10 proposes a global-local information-aware mul-
timodal model based on the GPT-2 model. Specifically, they
provide an efficient GPT-2 implementation which skips the
default byte-pair encoding for specially introduced tokens
and instead encodes new object tokens with a single iden-
tifier, ensuring the grounded representation of those tokens
within the model.

Performance Analysis

Starting with a description of the baseline, we will now
present the results for the SIMMC 2.0 challenge entries.

Performance Summary
The entries to the challenge set a new state-of-the-art in all
four subtasks. The results are summarized in Tab. 5.

The winner of the multimodal disambiguation subtask
(subtask 1) was the BART+ResNet model from Team 6. This



Team 1. Disamb. 2. MM-Coref 3. MM-DST 4. Response Retrieval & Generation
Acc?t Coref F11 Slot F11 Intent F11 MRR?T r@117 r@51t r@10T Mean] BLEU?T
GPT-2 73.5 441 83.8 94.1 0.202
MTN . . 76.7 92.8 0.211
Team 1 52.1 88.3 96.3 53.5 428 654 74.9 11.0 0.285
51.9 88.4 96.3 51.7 412 628 72.5 1.9 0.279
Team 2 78.3
Team 3 89.5 422 87.8 96.2 61.2 49.6 747 84.5 6.6 0.256
Team 4 93.9 75.8 90.3 95.9 81.5 712 95.0 98.2 1.9 0.295
Team 5 93.8 56.4 89.3 96.4 32.0 199 418 61.2 12.9 0.322
Team 6 94.7 59.5 91.5 96.0 .
94.5 . - - 0.309
Team 7 93.1 57.3
93.1 63.4 4.0 414 0.297
Team 8 ggg
68.2
Team 9 73.3
Team10 g3 582 §7.7 95.8 0327

Table 5: Summary of the results on Test-Std split. Best results from each system are shown. (1) Multimodal Disambiguation
(Disamb.), via classification accuracy, (2) Multimodal Coreference Resolution (MM-Coref), via coref prediction F1, (3)
Dialog State Tracking (DST), via slot and intent F1, (4) Response Generation via BLEU, recall@k (k=1,5,10), Mean rank,
and mean reciprocal rank (MRR). 1: higher is better. Baseline performances: Moon et al. (2020) (top), Le et al. (2019) (bottom).

model was the winner for the dialog state tracking subtask
(subtask 3) as well. The winner of the multimodal coref-
erence resolution task (subtask 2) and the response retrieval
task (subtask 4a) was a BART-based multimodal model from
Team 4. The joint winners of the response generation (4b)
were Team 5 and 10.

Per-Subtask Analysis

Subtask 1: Fig. 4 shows the distribution of the disambigua-
tion accuracy as turns of the dialog progress.

1.0 7 /
- 0.9 —— Team 3
o Team 4 (W)
5 —e— Team 5 (W)
% 0.8 —*— Team 6 (R)
\ Team 7
—a— Team 8
0.7 \ —e— Team 10 (W)

1 2 3 4 5 6 7 8 9
turn_id

Figure 4: Distribution of disambiguation accuracy as dialog
progresses.

Subtask 2 & 3: From Table 5, we find that the universal
multimodal transformer approaches that incorporate object
token embeddings as part of causal language modeling (en-

coding information such as object coordinates, visual fea-
tures, etc.) tend to be the most effective for the MM-Coref
task (Team 4, 8 and 9). Interestingly, for the Dialog State
Tracking task, we find that the approaches that leverage the
stringified tokens as multimodal context (Team 6) perform
the best, showing that having more homogeneous token rep-
resentations is beneficial for the primarily language-focused
tasks such as dialog act slot prediction.

Subtask 4: To better understand the performance of the
models, we analyze BLEU scores based on the dialog act.
An interesting trend is that both the winner entries outper-
form the rest in INFORM:COMPARE act. This is doubly
challenging as it involves informing the comparison of two
items.

Conclusions

The SIMMC 2.0 challenge saw an increase the diversity of
the underlying architectures of the transformers used to fine-
tune on the in-domain data. This could be an indication of
different backbones offering complementary benefits to fine-
tuning on SIMMC 2.0 dataset.

Our aim in organizing the SIMMC 2.0 challenge in
DSTCI10 is to encourage and motive the research commu-
nity towards the problem of situated and interactive mul-
timodal task-oriented dialog agents. Such agents have im-
mense practical applications and with them bring a plethora
of multimodal challenges. We hope that the insights gained
throws light on the challenges of such multimodal dialogs
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Figure 5: Distribution of BLEU score based on the natural
language generation act.

and inspires multiple follow-up lines of research.

What next? We identify potential next steps for the
SIMMC 2.0 challenge to further this direction of research
(decreasing magnitude of change compared to SIMMC 2.0):

e Multimodal input streams. The current setup leverages
screenshots from a shopping store as multimodal context.
While this is a hard setup in itself with several challenges,
it does not capture additional inputs like eye gaze, head
position, gestures efc., expected in a real setting. Human
users often uses these additional cues for referring to ob-
jects (e.g., "How much is that shirt (pointing a finger)”).
In order to incorporate such modalities, SIMMC would
need to ground conversations on a virtual environment
with a stream of inputs to capture users’ eye gaze, head
position, location in the store, efc.

* Robustness to size, multiple domain, and catalog up-
dates. Shopping applications often require the assistant
to be robust towards the size of the catalog, spanning
multiple domains, and updating catalogs. Re-training
conversational models for every change in the catalog is
not feasible and therefore stricter evaluation must be im-
posed to discourage catalog memorization.

Challenging disambiguation task. Though multimodal
disambiguation occurs less frequently ( 1 out of 14 turns
in SIMMC 2.0), it is an important skill in a conversational
agent. In light of a nearly perfect accuracy ( 95%), a po-
tential future direction is to ensure harder disambiguation
turns in SIMMC 2.0 either through synthetic data aug-
mentation or additional data collection.
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